Appendix III: Model Compression Verification
In the model compression scheme, the range of sij is divided into L intervals, resulting in L+1 interpolation points, denoted as x1,x2,⋯,xL+1. For each interval [xl,xl+1), a fifth-order polynomial is used to approximate the embedding network:
gml(x)=amlx5+bmlx4+cmlx3+dmlx2+emlx+fml
Note: The variable x in the polynomial should be sij−xl. At each grid point, the following three boundary conditions must be satisfied:
- Function value consistency:
yl=Gm(xl)
- First-order derivative consistency:
yl′=Gm′(xl)
- Second-order derivative consistency:
yl′′=Gm′′(xl)
The coefficients can be computed as follows:
aml=2Δt51[12h−6(yl+1′+yl′)Δt+(yl+1′′−yl′′)Δt2]
bml=2Δt41[−30h+(14yl+1′+16yl′)Δt+(−2yl+1′′+3yl′′)Δt2]
cml=2Δt31[20h−(8yl+1′+12yl′)Δt+(yl+1′′−3yl′′)Δt2]
dml=21yl′′
eml=yl′
fml=yl
where h=yl+1−yl, and Δt=xl+1−xl.
The conditions to be satisfied are that when sij=xl or xl+1, the function value, first-order derivative, and second-order derivative values must all match those of the embedding network. The corresponding x values are 0 and Δt. The value of the fifth-order polynomial function is:
gml(x)=2Δt5x5[12h−6(yl+1′+yl′)Δt+(yl+1′′−yl′′)Δt2]+2Δt4x4[−30h+(14yl+1′+16yl′)Δt+(−2yl+1′′+3yl′′)Δt2]+2Δt3x3[20h−(8yl+1′+12yl′)Δt+(yl+1′′−3yl′′)Δt2]+21yl′′x2+yl′x+yl
The first-order derivative is:
gml(x)=2Δt5x4⋅5[12h−6(yl+1′+yl′)Δt+(yl+1′′−yl′′)Δt2]+2Δt4x3⋅4[−30h+(14yl+1′+16yl′)Δt+(−2yl+1′′+3yl′′)Δt2]+2Δt3x2⋅3[20h−(8yl+1′+12yl′)Δt+(yl+1′′−3yl′′)Δt2]+yl′′x+yl′
The second-order derivative is:
gml(x)=2Δt5x3⋅20[12h−6(yl+1′+yl′)Δt+(yl+1′′−yl′′)Δt2]+2Δt4x2⋅12[−30h+(14yl+1′+16yl′)Δt+(−2yl+1′′+3yl′′)Δt2]+2Δt3x⋅6[20h−(8yl+1′+12yl′)Δt+(yl+1′′−3yl′′)Δt2]+yl′′
When x=0, the requirements are obviously satisfied. To verify the result when x=Δt, the function value is:
gml(Δt)=21[12h−6(yl+1′+yl′)Δt+(yl+1′′−yl′′)Δt2]+21[−30h+(14yl+1′+16yl′)Δt+(−2yl+1′′+3yl′′)Δt2]+21[20h−(8yl+1′+12yl′)Δt+(yl+1′′−3yl′′)Δt2]+21yl′′Δt2+yl′Δt+yl=h−yl′Δt−21yl′′Δt2+21yl′′Δt2+yl′Δt+yl=yl+1
The first-order derivative value is:
gml(Δt)=2Δt5[12h−6(yl+1′+yl′)Δt+(yl+1′′−yl′′)Δt2]+2Δt4[−30h+(14yl+1′+16yl′)Δt+(−2yl+1′′+3yl′′)Δt2]+2Δt3[20h−(8yl+1′+12yl′)Δt+(yl+1′′−3yl′′)Δt2]+yl′′Δt+yl′=yl+1′−yl′−yl′′Δt+yl′′Δt+yl′=yl+1′
The second-order derivative value is:
gml(Δt)=2Δt220[12h−6(yl+1′+yl′)Δt+(yl+1′′−yl′′)Δt2]+2Δt212[−30h+(14yl+1′+16yl′)Δt+(−2yl+1′′+3yl′′)Δt2]+2Δt26[20h−(8yl+1′+12yl′)Δt+(yl+1′′−3yl′′)Δt2]+yl′′=yl+1′′−yl′′+yl′′=yl+1′′